Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn5

Identifieur interne : 000053 ( Russie/Analysis ); précédent : 000052; suivant : 000054

Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn5

Auteurs : RBID : Pascal:11-0235896

Descripteurs français

English descriptors

Abstract

The lack of superconductivity in several candidate materials that exhibit a non-spin density wave quantum critical point has raised the question of whether the associated spectra of quantum fluctuations are beneficial to forming superconducting electron pairs. Here we discuss the possibility that the prototypical heavy-fermion antiferromagnet CeRhIn5 may be the first example of unconventional superconductors where superconductivity arises from Kondo-breakdown quantum criticality.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0235896

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn
<sub>5</sub>
</title>
<author>
<name sortKey="Park, Thson" uniqKey="Park T">Thson Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Sungkyunkwan University</s1>
<s2>Suwon 440-746</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Suwon 440-746</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sidorov, V A" uniqKey="Sidorov V">V. A. Sidorov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Vereschagin Institute of High Pressure Physics, RAS</s1>
<s2>142190 Troitsk</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>142190 Troitsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ronning, F" uniqKey="Ronning F">F. Ronning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bauer, E D" uniqKey="Bauer E">E. D. Bauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarrao, J L" uniqKey="Sarrao J">J. L. Sarrao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thompson, J D" uniqKey="Thompson J">J. D. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0235896</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0235896 INIST</idno>
<idno type="RBID">Pascal:11-0235896</idno>
<idno type="wicri:Area/Main/Corpus">003152</idno>
<idno type="wicri:Area/Main/Repository">002179</idno>
<idno type="wicri:Area/Russie/Extraction">000053</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiferromagnetic materials</term>
<term>Breakdown</term>
<term>Cerium compounds</term>
<term>Electron pairs</term>
<term>Heavy fermions</term>
<term>Indium compounds</term>
<term>Kondo effect</term>
<term>Pressure effects</term>
<term>Quantum fluctuation</term>
<term>Quantum phase transition</term>
<term>Rhodium compounds</term>
<term>Spin density waves</term>
<term>Superconductivity</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transition phase quantique</term>
<term>Effet pression</term>
<term>Supraconductivité</term>
<term>Onde densité spin</term>
<term>Fluctuation quantique</term>
<term>Paire électron</term>
<term>Antiferromagnétique</term>
<term>Effet Kondo</term>
<term>Disruption</term>
<term>Composé du rhodium</term>
<term>Composé de l'indium</term>
<term>Composé ternaire</term>
<term>Fermion lourd</term>
<term>Matériau antiferromagnétique</term>
<term>Composé du cérium</term>
<term>CeRhIn5</term>
<term>7550E</term>
<term>7215Q</term>
<term>7127</term>
<term>74</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lack of superconductivity in several candidate materials that exhibit a non-spin density wave quantum critical point has raised the question of whether the associated spectra of quantum fluctuations are beneficial to forming superconducting electron pairs. Here we discuss the possibility that the prototypical heavy-fermion antiferromagnet CeRhIn
<sub>5</sub>
may be the first example of unconventional superconductors where superconductivity arises from Kondo-breakdown quantum criticality.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn
<sub>5</sub>
</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Strongly correlated electron systems</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PARK (Thson)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIDOROV (V. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEE (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RONNING (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BAUER (E. D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SARRAO (J. L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>THOMPSON (J. D.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RONNING (Filip)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BATISTA (Cristian)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics, Sungkyunkwan University</s1>
<s2>Suwon 440-746</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, NM 87544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Vereschagin Institute of High Pressure Physics, RAS</s1>
<s2>142190 Troitsk</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s2>094218.1-094218.5</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000194630670180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0235896</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The lack of superconductivity in several candidate materials that exhibit a non-spin density wave quantum critical point has raised the question of whether the associated spectra of quantum fluctuations are beneficial to forming superconducting electron pairs. Here we discuss the possibility that the prototypical heavy-fermion antiferromagnet CeRhIn
<sub>5</sub>
may be the first example of unconventional superconductors where superconductivity arises from Kondo-breakdown quantum criticality.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A27</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E30F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70E50E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transition phase quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum phase transition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet pression</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Pressure effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Onde densité spin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Spin density waves</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Fluctuation quantique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum fluctuation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Paire électron</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Electron pairs</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Antiferromagnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Antiferromagnetic materials</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Antiferromagnético</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet Kondo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Kondo effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Disruption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Breakdown</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé du rhodium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Rhodium compounds</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé de l'indium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium compounds</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Fermion lourd</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Heavy fermions</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Matériau antiferromagnétique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Antiferromagnetic materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé du cérium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Cerium compounds</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>CeRhIn5</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7550E</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7215Q</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7127</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>74</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000053 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000053 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0235896
   |texte=   Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn5
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024